This is coming to you from Ames, Iowa at the Spring American Mathematical Society Meeting. I am here to attend the sessions on the Topology of 3-dimensional manifolds.

Note: I try to go to conferences regularly; I have averaged about 1 conference a year. Sometimes, the conference is a MAA Mathfest conference. These ARE fun and refreshing. But sometimes (this year), I go to a research oriented conference.

I’ll speak for myself only.

Sometimes, these can be intimidating. Though many of the attendees are nice, cordial and polite, the fact is that many (ok, almost all of them) are either the best graduate students or among the finest researchers in the world. The big names who have proved the big theorems are here. They earn their living by doing cutting edge research and by guiding graduate students through their research; they are not spending hours and hours convincing students that .

So, the talks can be tough. Sure, they do a good job, but remember that most of the audience is immersed in this stuff; they don’t have to review things like “normal surface theory” or “Haken manifold”.

Therefore, it is VERY easy to start lamenting (internally) “oh no, I am by far the dumbest one here”. That, in my case, IS true, but it is unimportant.

What I found is that, if I pay attention to what I can absorb, I can pick up a technique here and there, which I can then later use in my own research. In fact, just today, I picked up something that might help me with a problem that I am pondering.

Also, the atmosphere can be invigorating!

I happen to enjoy the conferences that are held on university campuses. There is nothing that gets my intellectual mood pumped up more than to hang around the campus of a division I research university. For me, there is nothing like it.

**This conference**

A few general remarks:

1. I didn’t realize how pretty Iowa State University is. I’d rank it along with the University of Tennessee as among the prettiest campuses that I’ve ever seen.

2. As far as the talks: one “big picture” technique that I’ve seen used again and again is the technique of: take an abstract set of objects (say, the Seifert Surfaces of a knot; say of minimal genus. Then to each, say, ambient isotopy class of Seifert Surface, assign a vertex of a graph or simplicial complex. Then group the vertices together either by a segment (in some settings) or a simplex (if, in one setting, the Seifert Surfaces admit disjoint representatives). Then one studies the complex or the graph.

In one of the talks (talking about essential closed surfaces in the complement of a knot), one assigned such things to the vertex of a graph (dendron actually) and set up an algorithm to search along such a graph; it turns out that is one starts near the top of this dendron, one gains the opportunity to prune lower branches of the group by doing the calculation near the top.

**Sidenote **

The weather couldn’t be better; I found time over lunch to do a 5.7 mile run near my hotel. The run was almost all on bike paths (albeit a “harder” surface than I’d like).