College Math Teaching

March 16, 2019

The beta function integral: how to evaluate them

My interest in “beta” functions comes from their utility in Bayesian statistics. A nice 78 minute introduction to Bayesian statistics and how the beta distribution is used can be found here; you need to understand basic mathematical statistics concepts such as “joint density”, “marginal density”, “Bayes’ Rule” and “likelihood function” to follow the youtube lecture. To follow this post, one should know the standard “3 semesters” of calculus and know what the gamma function is (the extension of the factorial function to the real numbers); previous exposure to the standard “polar coordinates” proof that \int^{\infty}_{-\infty} e^{x^2} dx = \sqrt{\pi} would be very helpful.

So, what it the beta function? it is \beta(a,b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} where \Gamma(x) = \int_0^{\infty} t^{x-1}e^{-t} dt . Note that \Gamma(n+1) = n! for integers n The gamma function is the unique “logarithmically convex” extension of the factorial function to the real line, where “logarithmically convex” means that the logarithm of the function is convex; that is, the second derivative of the log of the function is positive. Roughly speaking, this means that the function exhibits growth behavior similar to (or “greater”) than e^{x^2}

Now it turns out that the beta density function is defined as follows: \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1}(1-x)^{b-1} for 0 < x < 1 as one can see that the integral is either proper or a convergent improper integral for 0 < a < 1, 0 < b < 1 .

I'll do this in two steps. Step one will convert the beta integral into an integral involving powers of sine and cosine. Step two will be to write \Gamma(a) \Gamma(b) as a product of two integrals, do a change of variables and convert to an improper integral on the first quadrant. Then I'll convert to polar coordinates to show that this integral is equal to \Gamma(a+b) \beta(a,b)

Step one: converting the beta integral to a sine/cosine integral. Limit t \in [0, \frac{\pi}{2}] and then do the substitution x = sin^2(t), dx = 2 sin(t)cos(t) dt . Then the beta integral becomes: \int_0^1 x^{a-1}(1-x)^{b-1} dx = 2\int_0^{\frac{\pi}{2}} (sin^2(t))^{a-1}(1-sin^2(t))^{b-1} sin(t)cos(t)dt = 2\int_0^{\frac{\pi}{2}} (sin(t))^{2a-1}(cos(t))^{2b-1} dt

Step two: transforming the product of two gamma functions into a double integral and evaluating using polar coordinates.

Write \Gamma(a) \Gamma(b) = \int_0^{\infty} x^{a-1} e^{-x} dx  \int_0^{\infty} y^{b-1} e^{-y} dy

Now do the conversion x = u^2, dx = 2udu, y = v^2, dy = 2vdv to obtain:

\int_0^{\infty} 2u^{2a-1} e^{-u^2} du  \int_0^{\infty} 2v^{2b-1} e^{-v^2} dv (there is a tiny amount of algebra involved)

From which we now obtain

4\int^{\infty}_0 \int^{\infty}_0 u^{2a-1}v^{2b-1} e^{-(u^2+v^2)} dudv

Now we switch to polar coordinates, remembering the rdrd\theta that comes from evaluating the Jacobian of x = rcos(\theta), y = rsin(\theta)

4 \int^{\frac{\pi}{2}}_0 \int^{\infty}_0 r^{2a +2b -1} (cos(\theta))^{2a-1}(sin(\theta))^{2b-1} e^{-r^2} dr d\theta

This splits into two integrals:

2 \int^{\frac{\pi}{2}}_0 (cos(\theta))^{2a-1}(sin(\theta))^{2b-1} d \theta 2\int^{\infty}_0 r^{2a +2b -1}e^{-r^2} dr

The first of these integrals is just \beta(a,b) so now we have:

\Gamma(a) \Gamma(b) = \beta(a,b) 2\int^{\infty}_0 r^{2a +2b -1}e^{-r^2} dr

The second integral: we just use r^2 = x \rightarrow 2rdr = dx \rightarrow \frac{1}{2}\frac{1}{\sqrt{x}}dx = dr to obtain:

2\int^{\infty}_0 r^{2a +2b -1}e^{-r^2} dr = \int^{\infty}_0 x^{a+b-\frac{1}{2}} e^{-x} \frac{1}{\sqrt{x}}dx = \int^{\infty}_0 x^{a+b-1} e^{-x} dx =\Gamma(a+b) (yes, I cancelled the 2 with the 1/2)

And so the result follows.

That seems complicated for a simple little integral, doesn’t it?

Advertisements

5 Comments »

  1. Thanks for a marvelous posting! I seriously enjoyed reading it, you
    could be a great author. I will make certain to bookmark your blog and will
    eventually come back sometime soon. I want to encourage you to ultimately continue your great work, have a nice
    holiday weekend! http://www.inbryansk.ru/chat/go.php?url=http://www.fatpingu.ch/ios

    Comment by trusted casino malaysia — March 17, 2019 @ 4:17 pm

  2. […] Math stuff: a professor I once TA’ed for won the Abel Prize (sort of like a Nobel Prize for mathematics) and I spent time writing this up. […]

    Pingback by Impending trip: Spring Break « blueollie — March 20, 2019 @ 12:26 am

  3. […] works well is to use the beta distribution for the prior. Note: the pdf is and if one uses , this works very well. Now because the mean will […]

    Pingback by Bayesian Inference: what is it about? A basketball example. | College Math Teaching — April 5, 2019 @ 2:13 am

  4. […] works well is to use the beta distribution for the prior. Note: the pdf is and if one uses , this works very well. Now because the mean will […]

    Pingback by Bayesian Statistics: what is it about? « blueollie — April 5, 2019 @ 2:15 am

  5. […] works well is to use the beta distribution for the prior. Note: the pdf is and if one uses , this works very well. Now because the mean will […]

    Pingback by Bayesian Statistics: what is it about? – Life of an old goat — April 12, 2019 @ 10:32 am


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: