College Math Teaching

February 11, 2015

Teaching advanced stuff to undergraduates: taking stuff for granted….

Filed under: advanced mathematics, pedagogy, point set topology — Tags: , — collegemathteaching @ 5:34 pm

I am teaching undergraduate topology this semester; you can see some stuff that I’ve posted for undergraduates here.

I took the “start with metric spaces and topology of R, R^2, R^3.. approach and am going slower than I’d like. But it takes some time to absorb the stuff.

So, we are finally gotten up to homeomorphisms (still in basic metric spaces) and so I figured that we were finally ready to show something like: [0,1] is not homeomorphic to S^1 (the unit circle). Fine: suppose a homeomorphism exists and decompose [0,1] =U \cup V\ \{x \} where x \notin U, x\notin V, U \cap V = \emptyset

Not a problem so far…so now pull back the disjoint open sets U, V to the unit circle minus one point…and….then…I ….realized….that…I have not proven that the interval is a connected set; in fact I haven’t even defined “connected set”. &^%$#. Now, that isn’t that hard to do, but it does take time and one has to do some setting up.

And that is one problem with teaching this course: you have to do so much elementary stuff to even begin to prove something elementary.


Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at

%d bloggers like this: